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SUMMARY 
Theodorsen’s method for calculating the incompressible potential flow past an aerofoil is viewed afresh. It is 
found that some simple modifications to the computational process make the computations relatively faster, 
easier and more accurate. The new modifications are applicable to the analysis of conventional aerofoils with 
up to moderate thickness and camber ratios. Several examples are presented to show the effectiveness of the 
modifications. 
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1. INTRODUCTION 

Theodorsen’s’.’ ‘exact’ but iterative method bf calculating the speed (and hence the pressure) 
distribution on an aerofoil placed in an unbounded uniform ideal fluid flow is a landmark in 
aerofoil theory. The method is also known to give excellent results for a large class of aerofoils even 
at the end of the first iteration, a factor important in actual calculations since a solution can then 
be obtained quickly. Unfortunately, the calculation procedure as reported by Theodorsen or its 
treatment in  textbook^^-^ leaves the impression that the procedure is cumbersome and further 
that it may lead to numerical inaccuracies because of several graphical (or numerical) differ- 
entiations required in the calculations. 

In this paper we shall show that for conventional aerofoils of up to moderate thickness and 
camber ratios, where an accurate enough solution can be obtained in one or two iterations, the 
calculation procedure can be performed analytically. The small amount of numerical analysis that 
must be resorted to when the aerofoil co-ordinates are not given as a Fourier series in the Glauert 
variable 4 requires only numerical integration. This new computational strategy makes 
Theodorsen’s method faster, comparatively more accurate and easier to use. 

Although viscosity is neglected in ideal fluid flow theory, its results are nevertheless frequently 
used as the starting point for the further analysis of the corresponding viscous flow. The 
Theodorsen solution is therefore of primary interest in aerofoil theory. 

In the following, Section 2 briefly describes Theodorsen’s method, Section 3 contains the new 
calculation procedure, Section 4 gives examples and Section 5 draws the final conclusions. 

2. THEODORSEN’S METHOD 

Theodorsen’s method is well described in several  textbook^,^-^ hence only a brief description is 
provided below. The two-step method, based on conformal mapping, maps the aerofoil to a circle 
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(see Figure t), then relates the flow past a circle to the flow past the aerofoil. The aerofoil C is 
placed in the z-plane with the aerofoil chord along the x-axis. V, is the free-stream velocity and a 
is the aerofoil angle of attdck. In the first step, the Joukowski mapping 

z = f + P / g  / = a  real constant (1) 

is used to map the aerofoil into a 'pseudo-circle' '% in the <-plane. This is best accomplished by 
locating the critical points t = _+ 21 as follows: near the leading edge, midway between the leading 
edge and its centre of curvature; and near the trailing edge, midway between the trailing edge and 
its centre of curvature. (If an edge is sharp or cusped, it becomes a critical point.) However, in 
practice (and in this paper), one frequently chooses z=O as the aerofoil mid-chord, z =  -21 as 
leading edge and z = 21 as trailing edge. For aerofoils of up to moderate thickness and camber 
ratios, the error is small. 

In the second step, the 'pseudo-circle' @ is mapped into a circle V with centre at [=O in the 
(-plane by an iterated determination of the complex coefficients C,= Rn(A, + iBJ, with R as the 
radius of W, in the mapping function 

Let the contours C, @ and '$? be described respectively by 

2 - PLANE LEADING EDGE CENTRE OF CURVATURE 

- X  

5-PLANE 

1;- 
17 

PLANE 

TAGNATION POINT 

Figure I .  Illustration of Theodorsen's mapping procedure 
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then 

or 

from which we obtain 

33 

$ - x o =  C [A,cos(ne)+B,sin(n8)], 

&=8-4= C [-B,,cos(ne)+A, sin(n8)], 

n =  1 

m 

n =  1 

and 

x = 21 cosh $ cos 4, y = 21 sinh $ sin 4, 

253 

(4) 

Also, we have from equations (8) 

$ =In e* =In (sinh $ + cosh $) 

=sinh$-(1/6)sinh3$+ . . . 
=y/(21 sin &)+ third-order terms in aerofoil thickness and camber ratios. (9) 

Note that 1 exp(i4) describes a circle in the e-plane which maps to a Joukowski aerofoil C, in the 
z-plane. Thus exp tj is a measure of the deviation of the aerofoil geometry C from that of C,. If the 
deviations are small, then I) will be small irrespective of aerofoil thickness and camber ratios. 
Alternatively, if the aerofoil's thickness and camber ratios are small, $ will again be small. 

The constants xo,  A,, and B,, are determined by iteration. To begin with, we know $ as a function 
of 4 only from equations (8). In the first iteration we choose 8= 4 and in subsequent iterations 
update 0 by means of equations (5H7) until the desired convergence is reached. In practice, for 
conventional aerofoils, convergence is rapid. The reason for this will become clear in Section 3. 

(10) 

where 8 = - /3 corresponds to the aerofoil trailing edge where the Kutta condition is applied, and 
W([ )  is the complex velocity. 

The speed on the circle V is given by 

1 W([)lg = 2 V ,  I sin (a + b) - sin (a - 0)l 

The speed on the aerofoil contour C is given by 

(1  1) 
V,( 1 + d&/d+) 1 sin (a + /I) - sih (a - 8)[ ex" 
J {  [ 1 +  (d$/d4)'] (sinh' $ +sinZ 4)} 

1 W(z)lc = 1 W ( ~ ) l ~ / l d z / d [ 1 ~  = ' 

where W(z) is the complex velocity and 4=0 corresponds to the trailing edge. Consequently 
p= -c(4=0). 



254 R. K. BERA 

The lift and pitching moment coefficients (Figure 2) are given by 

C L  = 8x(R/c)  sin (a + 8) 
CM0= 47r(R/c)’ [(B2+2A,B,)cos(2r) - (A2+A:-B:)sin(2a)] about z=O, 

CMM = CMMo - C,(m/c) cos (6 -a) about an arbitrary point z = p = meid, 

where c is the aerofoil chord length in the z-plane. 

3. METHOD OF SOLUTION 

Let the aerofoil be described by 
Y(x)=yc(x) k yt(x), X L E  < < xTE, 

where y,(x) and yc(x) represent the aerofoil semi-thickness and camber distributions respectively. 
The aerofoil leading edge and trailing edge co-ordinates are (x,,, 0) and (x,,, 0) respectively. In the 
composite sign f the plus refers to the aerofoil upper surface and the minus to the lower surface. 

For aerofoils of up to moderate camber and thickness ratios, y i  will be small and we may use the 
approximations (see equations (8) and (9)) 

+ z y/21 sin 4, (14) 
x 2 21 cos 4, (15) 

c 2 41. (16) 
This places the origin of the co-ordinate system in the z-plane at mid-chord and allows the use of 
the conventional Fourier series expansion for y(x) in the Glauert variable 4. Thus 

where the real constants B, and &,,, if not already known, may be found from 

(C/2)6^, =(1/24 S:’Yw d4, 

(c/2)b:,=(l/n) jO2‘Y(4) cos(m4)d4, 

Z- PLANE 

y t  

i !  

‘rn 

Figure 2. Nomenclature for force and moment on the aerofoil 
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If necessary, these integrals may be evaluated numerically, say, by the trapezoidal rule. Note that 
equations ( 1  8) evaluate the constants in a least squares sense. This is the only piece of numerical 
integration that may be needed, as was alluded to in the Introduction. 

From equation (14) we now have 
m to 

+(4) = C dnCsin (n4)/sin 41 + C &,[cos (m4)/sin 41. (19) 
n =  1 m = O  

First iteration 

Putting 0 = 4 ,  comparing equations (5) and (19) and noting that the y-co-ordinates at the 
aerofoil edges are zero, we have 

XI 

(A011 = ( x O ) ~ =  C a n ,  
n =  1.3 

.. 
(Bp)l=(Bp-J1 +2bp-1, ~ 2 3 .  

The symbol (O), denotes values for the first iterate. Also, from equations (5) and (6) we obtain 

a: 

(8)1= C (Bn)1* 
n =  1 

( O h  = 4 + ( 4 1  9 

Second iteration 

Let (O), denote values for the second iterate. Upon noting that $(O) = $[O(+)] = $(@, we have 
r z n  
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where 

+ third-order terms in semi-thickness and camber ratios, 

2n 

l f l ) ( i ,  j ,  k)=( l /n) Io  sin(@) sin(j4) cos(k4)dd 

1 if i = j ,  k = O ,  
-1/2 if ( i + j ) = k ,  k # O ,  

1/2 if [ j - i l = k ,  k # O ,  -1 0 otherwise, 

(25) 

2 n  

P ) ( i , j ,  k )  = ( l /n )  I. cos (i4) cos ( j4) cos ( k 4 )  d 4  

1 if i=j ,  k = O ,  
1/2 if ( i + j ) = k  or [ j - i l = k ,  k f O ,  (26) = I  0 otherwise. 

In evaluating ( A J 2  and ( B J ,  we will neglect terms of third order in the semi-thickness and 
camber ratios since this is quite compatible with the fact that in calculating $, and hence c, we have 
already neglected terms of the same order. The additional assumption made here is that dc/d4 is 
also of the same order as $. On similar grounds, third and subsequent iterations need not be 
carried out as these again only bring about corrections of third or higher order in semi-thickness 
and camber ratios. For consistency, however, third and higher iterations would require that 
additional terms be included in the expression for 1(1 in equation (14). 

The new values of 8, E,  ds/d$ and /? are now 

where 
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and 

( P ) 2  = -(44=0))2. (31) 
With these new values we can now easily calculate 1 W(z)(, from equation ( 1  1) and lift and 

moment coefficients from Equations (12). 

3.1. Calculation at the aerofoil edges 

To avoid a spurious division by zero on a digital computer in calculating $ at the aerofoil edges, 
equation ( 5 )  should be used instead of equation (14). 

The Fourier representation of the aerofoil co-ordinates by equation (17) leads to the individual 
aerofoil edges being rounded or cusped. If the given aerofoil has rounded or cusped edges, it does 
not matter. However, if the edge is sharp (but not cusped), i t  will be rounded by the Fourier 
representation. Its immediate consequence is to move the critical point of the transformation 
associated with the edge from on the circle to inside the circle. Thus any singularity in the speed at 
a sharp (but not cusped) leading edge postulated by the exact conformal map will now disappear. 
At the trailing edge the change is more or less inconsequential since in any case the application of 
the Kutta condition at the edge would remove the singularity by forcing the edge to be a 
stagnation point. 

We should, however, note in defence of the Fourier expansion for y that in practice the sharp 
leading edge aerofoil in the context of low-speed aerodynamics is of academic interest only. All 
aerofoils useful at low speed have a rounded leading edge, where the Fourier expansion of y is 
justified. 

At  a cusped trailing edge a computational problem arises on a digital computer, because 1 W(z)I 
attains the form 0/0 owing to the point CT in the C-plane (corresponding to the trailing edge point 
zT in the z-plane) being a stagnation point and both $ and 4 being zero there. (At a cusped edge 
dy/dx = dy/d4 - d4/dx = c,"= I [nd. cos ( n 4 )  - nb?, sin (n4)]/sin 4 = 0, which means that at a cusped 
trailing edge, where 4 = 0, dy/dx = c."= nci, = 0. Since [sin (n4)/sin 414 = = n, it follows that $ = 0 
from equation (19) when one remembers that == = 0 due to y = 0 at the aerofoil trailing edge.) 
The problem may be avoided by calculating very close to the trailing edge, say at (2x/c)=0.9999, 
which for all practical purposes would be the value at the trailing edge. However, for the purist, the 
exact value at the trailing edge may be obtained as follows. 

A t  the trailing edge (denoted by subscript T) we have 

4 T = O  

and in the immediate vicinity of the trailing edge 

4 =  4 T  + A 4 = A 4 ,  
E = E T  + (dE/d4)TA4 = + E;A~, 

sin(a+~)-sin(a-8)=sin(a-cT)-sin(a--A~-cT-cE;A~) 
zcos(a- ET)( 1 +&;)A+. 

Thus 

If l/lT is not zero at the trailing edge, then J/T/A4 will become infinite there and I W(t)I will be zero 
(i.e. the trailing edge will be a stagnation point). On the other hand, JIT will be zero if the trailing 
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edge is cusped. Once again, in the vicinity of the trailing edge we may write 

lL=*~+(dlL/d(b),(A~)+(1/2Xd’Cl//d(b~)T(A~)~+ . . . 9 

from which it follows that 

$lA4=$T’lA(b +(drC/ /d~)T+(1/2) (dZlL/d42)T(A(b)+ . . . 
z(d$/d4)T since &=O. 

Therefore at the cusped trailing edge 

This result differs from the one given by Pope’ by the factor cos(a-eT). This factor is put to unity 
there, which would be the case for I L X - E ~ I  4 1. 

4. ILLUSTRATIVE EXAMPLES 

In this section we shall provide three examples which demonstrate the ease and accuracy with 
which the new calculation procedure may be used. 

Example 1. Flow past an ellipse 

Let an ellipse of thickness ratio T be given by 

and for the second iteration the values are 



THEODORSEN'S METHOD IN AEROFOIL THEORY 259 

The exact solution for the ellipse is known to be 

V,( 1 + t )  I sina- sin(a- 4)l 
3,' cos2 4 + sin2 4) 1 W(Z)IC(erac,, = - - - ~ (35) 

A comparison of the two solutions is shown in Table I for r=O" and a= lo", with t = O 1 8 ;  the 
comparison is seen to be excellent. It should be noted that the solution obtained for the ellipse in 
equation (34) is approximate because we chose the leading and trailing edges of the ellipse as 
critical points rather than its foci. In the latter case the results given by Theodorsen's method 
would have been exact at the end of the first iteration itself. 

In this simple example the second iterated solution is identical to the first iterated solution. 
However, if a consistent third-order correction was attempted, it would be non-zero. 

Example 2. Flow past an approximate symmetric Joukowski aerofoil 

Let the aerofoil be given by 

f ? 1 ( 1 - x) ( 1 - x 2 p 2 ,  - l < x < l ,  
L'= { T~ sin$-(l/2)tl sin(2$), O<4<2n, 

where the thickness ratio T of the aerofoil is given by 

Table I. Surface speed distribution on an 18% thick ellipse 

- 0.95 106 
- 0.80902 
- 0.58779 
- 0.30902 
OOoooO 
0.30902 
0.5 8 779 
0.80902 

0.05562 
0.10580 
0.14562 
0.171 19 
0.18OOo 
0.171 19 
0.14562 
0.10580 

,14421 1.14537 1.73829 1.74006 
.16834 1.17004 1.54874 1.5 5099 
.17611 1.1 7799 1.43933 1,44162 
.17808 1.18000 1.36474 1.36697 
,1761 1 1.17799 1.30662 1.30870 
.16834 1.17004 1.25396 1.25578 
,14421 1.14537 1.19138 1.1 9259 

0.95 106 
1 Qoooo 

- 1aoooo 
- 0.95 106 
- 0.80902 
- 058779 
- 0.30902 

OOOOOO 
0.30902 
0.58779 
0.80902 
0.95106 
1 ooooo 

0.05562 
0,00000 
OOOOOO 

- 0.05562 
- 0.10580 
- 0.14562 
- 0.1 7 1 19 
-0.18000 
--017119 
- 0.14562 
- 0.10580 
- 0.05562 

OOOOOO 

1.03309 
O W 0 0 0  

@ooooo 
1.03309 
1.14421 
1.16834 
1.1761 1 
1.1 7808 
1.1761 1 
1 16834 
1.14421 
1.03309 
0.00000 

1.032 19 
0.00000 
0.00000 
1.032 1 9 
1.14537 
1.17004 
1.17799 
1.18000 
1.17799 
1.17004 
1.14537 
1.032 19 
0.00000 

1.04581 
0.00000 
2.29735 
011517 
0-5 1537 
075245 
087717 
095563 
100988 
1,04723 
1.06228 
098899 
000000 

1.04490 
O~OOOOO 

2.27655 
0.1 1507 
0.5 1589 
0.75354 
0.87857 
0.95719 
1.01 149 
1,04875 
1.06335 
0.988 13 
Qrn 
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Then d l=z l ,  d,= - ( 1 / 2 ) ~ ~  and all other a,, &=O. 
Thus for the first iteration we calculate 

(X0)l = z12 

( A , ) , =  -51, 
(AJl = 0, P B 2, 

=o, PBO, 

( ~ ( 4 ) ) ~  = -z l  sin$, 
(@1=4+(41; 

$($)=zl(l -cos$), d$/d$=z, sin$, 

(PI1 =O, (de/d4)l = -tl cos 4, 

and for the second iteration the values are 

The speed on the aerofoil surface can be obtained by substituting the above values in 
equation (1 1). 

An exact solution for this aerofoil is not available. Nevertheless, we can demonstrate the 
accuracy of the first iteration by comparing it with the second. This is done in Table I1 for a 12% 
thick aerofoil at a=0". It is seen that the difference between the two iterations is small enough for 
the first iteration to be sufficiently accurate for practical purposes. 

Table 11. Surface speed distribution on a 12% thick symmetric approximate 
Joukowski aerofoil; a=O" 

Aerofoil co-ordinates I W)lc/ v, 
X Y First iteration Second iteration 

- 1~0oO00 
-0.95106 
- 0.80902 
-058779 
- 0.30902 

0~0oO00 
0.30902 
0.58779 
0.80902 
0.95106 
1 ~ooo00 

0.00000 
0.03133 
005525 
006675 
006469 
0.05 196 
0.03415 
0-01733 
OG0583 
0.00079 
0~00000 

0Ooooo 
1.10175 
1.12833 
1.1 1093 
1.08203 
1.04908 
1.0 1656 
0-98786 
0.96559 
0.95 1 52 
094671 

O~OooOO 
1.10805 
1.13250 
1.1 1231 
1.08128 
1.04767 
1.0161 1 
098952 
0.96967 
0.9 57 50 
095340 
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Example 3. Flow past a symmetric Karman-Trefftz biconvex aerofoil 

Let the aerofoil be given by 

y =  f [ y , + ( R : - X 2 ) 1 ’ 2 ] ,  -- 1 d x <  + 1. 

This biconvex aerofoil is composed of two circular arcs of radius R,, and the centres of the circles 
of which the arcs are a part are located at (0, f yo) .  If the thickness ratio of the aerofoil is T, then 

RO = (1  - JJi)”2, = - (1  - T2)/25. 

A sufficiently accurate Fourier series for the aerofoil with ~ = 0 2 0  shows that 

a, = o m  I 1578, 
a3= - 0 m 6 4 8 7 6 X  1 0 - 1 ,  

a, = -0.52849144 x 10-2, 
a,= -0.17140302 x 10-2, 

a,= - 0 m 7 i 9 7 0 x  10-3, 
a,, = -0.41386187 x 10-3, 
a,,= -0.24762734 x 10-3, 
d l s =  -0.15978169 x 

a, = 0.0, 
a4 = 00, 
a, = 0.0, 
as = 0.0, 
a,,=o.o, 
a I = 0.0, 
6 14 = 0.0, 
a , 6 = 0.0. 

The remaining a, are approximated to zero. All the 6“ are of course zero. 
For this case the speed on the aerofoil surface at a=O0 is tabulated in Table 111 which also 

contains the exact solution obtained by means of the Karman-Trefftz mapping. It is seen that even 
for this 20% thick aerofoil the first iteration itself agrees very well with the exact solution. 

5. DISCUSSION AND CONCLUSIONS 

The new method is easy to use and program on a digital computer. The excellent accuracy of the 
method is testified to by the examples shown in Section 4. Although the maximum thickness ratio 
there was chosen to be 20%, equally good results were obtained even for 30% thickness ratios for 
all the examples. This should not come as a surprise since the semi-thickness ratio is still only 15% 

Table 111. Surface speed distribution on a 20% thick Karman-Trefftz biconvex aerofoil. a=O“ 

Aerofoil co-ordinates I W(z)IJ v m  
_.___ - 

X Y 
(Fourier Y First Second Exact 

representation) (exact) iteration iteration Karman-Trefftz 
-_______ _____ - _____ 
- 1aocoo 0.00000 0.00000 0.00000 OWOOO 0.00000 
- 092860 0.02865 0.02852 082508 084354 0.84230 
- 0.76704 0.08428 0.08428 1.02275 1.02702 1.03121 
-0.54464 0.14224 0.14232 1.15081 1.15174 1.15692 
-0.28232 0.18462 018463 1.22715 1.23226 1.23243 
000000 0.20006 0 2 m  1.25296 1.261 17 1.25780 
0.28232 0.18462 0.18463 1.2271 5 1.23226 1.23243 

1.15692 054464 0.14224 0.14232 1.15081 1.15174 
0.76704 0.08428 0.08428 1.02275 1.02702 1.03121 
092860 0.02865 0.02852 0.82508 0.84354 084230 
1 moo0 0.00000 000000 000000 OQoOOO 000000 
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1 W(z)lc= 

and the neglected third-order terms would generally affect the third significant figure in the 
calcuIations. One can show this by roughly calculating the third-order terms. 

Once the a =O” case has been calculated, the speed on the aerofoil surface at any other a can be 
easily obtained by the simple relation 

sin (a+ j?) -sin (z- 0) 
______- I Wz)Icat.=o=. sin f i  + sin 8 

The Fourier representation for y was chosen because it is dictated by the Fourier representation 
of $. Therefore our discussion in Section 3.1 regarding the aerofoil edges would be equally valid 
irrespective of how one implemented Theodorsen’s method. 

The analytical form of the present results should be an advantage in solving the inverse 
problem; that is, designing an aerofoil to sustain a given pressure distribution. This aspect is now 
being looked into by the author. 

Finally, we remark that the present method of a two-iteration solution is more accurate than 
Goldstein’s third apRrbximation6 which has the accuracy of the first iteration of the present 
met hod. 
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